

Document: Datasheet Date: 28-Jul-08 Model #: 3190 Product's Page: www.sunrom.com/p-510.html

Light Dependent Resistor - LDR

Two cadmium sulphide(cds) photoconductive cells with spectral responses similar to that of the human eye. The cell resistance falls with increasing light intensity. Applications include smoke detection, automatic lighting control, batch counting and burglar alarm systems.

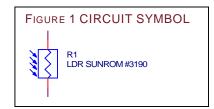
Applications

Photoconductive cells are used in many different types of circuits and applications.

Analog Applications

- Camera Exposure Control
- Auto Slide Focus dual cell
- Photocopy Machines density of toner
- Colorimetric Test Equipment
- Densitometer
- Electronic Scales dual cell
- Automatic Gain Control modulated light source
- Automated Rear View Mirror

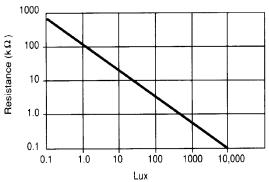
Digital Applications


- Automatic Headlight Dimmer
- Night Light Control
- Oil Burner Flame Out
- Street Light Control
- Absence / Presence (beam breaker)
- Position Sensor

Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
			.		
Cell resistance	1000 LUX	-	400	-	Ohm
	10 LUX	-	9	-	K Ohm
Dark Resistance	-	-	1	-	M Ohm
Dark Capacitance	-	-	3.5	-	pF
Rise Time	1000 LUX	-	2.8	-	ms
	10 LUX	-	18	-	ms
Fall Time	1000 LUX	-	48	-	ms
	10 LUX	-	120	-	ms
Voltage AC/DC Peak		-	-	320	V max
Current		-	-	75	mA max
Power Dissipation				100	mW max
Operating		-60	-	+75	Deg. C
Temperature					

Guide to source illuminations


Light source Illumination	LUX	
Moonlight	0.1	
60W Bulb at 1m	50	
1W MES Bulb at 0.1m	100	
Fluorescent Lighting	500	
Bright Sunlight	30,000	

Sensitivity

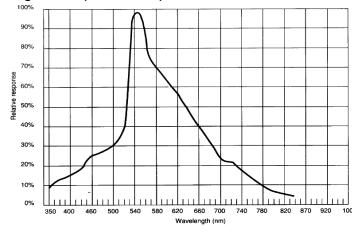

The sensitivity of a photodetector is the relationship between the light falling on the device and the resulting output signal. In the case of a photocell, one is dealing with the relationship between the incident light and the corresponding resistance of the cell.

FIGURE 2 RESISTANCE AS FUNCTION OF ILLUMINATION

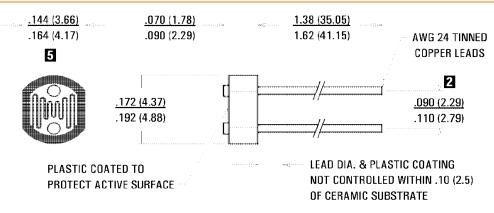
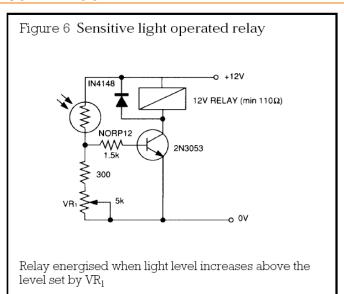
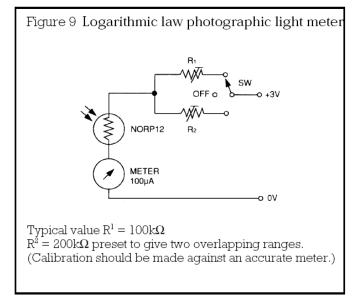
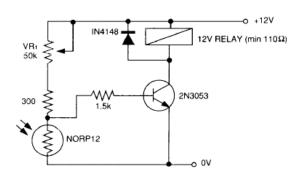

Spectral Response

Figure 3 Spectral response




Like the human eye, the relative sensitivity of a photoconductive cell is dependent on the wavelength (color) of the incident light. Each photoconductor material type has its own unique spectral response curve or plot of the relative response of the photocell versus wavelength of light.

Dimensions



Typical Application Circuits

Figure 7 Light interruption detector

As Figure 6 relay energised when light level drops below the level set by VR_1

Figure 8 Automatic light circuit

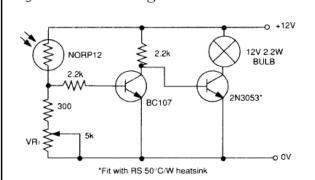
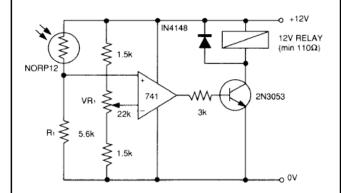



Figure 10 Extremely sensitive light operated relay

(Relay energised when light exceeds preset level.) Incorporates a balancing bridge and op-amp. R_1 and NORP12 may be interchanged for the reverse function.